

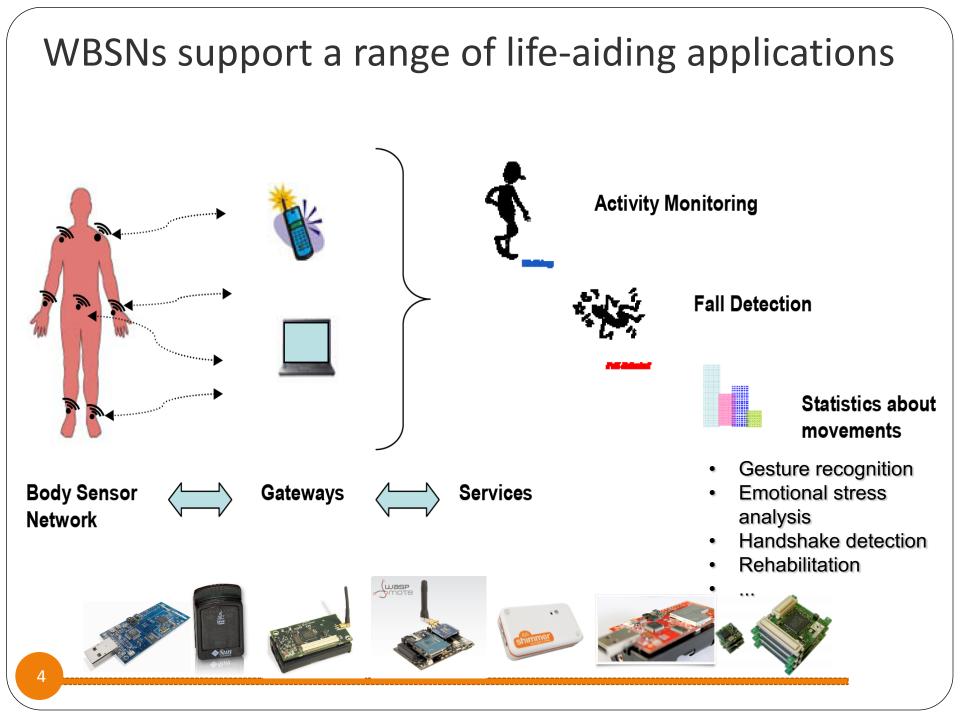
Wearable Computing Systems based on Body Sensor Networks: State-of-the-art and Future Research Challenges

Giancarlo Fortino

Full Professor of Computer Engineering @ Department of Informatics, Modeling, Electronics and Systems (DIMES) University of Calabria, Rende (CS), ITALY

High-end Foreign Expert in China Distinguished Professor at Huazhong Agricultural University (China) Guest/Adjunct Professor of Computer Engineering at Wuhan University of Technology (China) Adjunct Senior Research Fellow at Italian National Research Center (CNR – ICAR), Italy High-end Expert at Huazhong University of Science and Technology (China) CAS PIFI Visiting Scientist at SIAT – Shenzhen (China) Director of the SPEME Lab and Co-Director of Joint China-Italy IoT Labs (Wuhan & Shanghai) Co-founder and CEO of SenSysCal S.r.I. (www.sensyscal.com)

<u>g.fortino@unical.it</u> <u>http://wwwinfo.deis.unical.it/fortino/index.htm</u> <u>http://labs.dimes.unical.it/speme/</u>


Outline

- 1. Wireless Body Sensor Networks (WBSN)
- 2. Embedded Frameworks for BSNs: State-of-the-Art
- 3. The SPINE Framework
 - Architecture and Evaluation
 - Applications
 - Demo
- 4. SPINE Variants/Extensions:
 - C-SPINE, A-SPINE, SPINE2, SPINE-*
- 5. Conclusions
- 6. Research Challenges and Future Work

WBSNs: Background

- A **Wireless Body Sensor Network** is a Wireless Sensor Network applied to the human body.
- Typically, multiple sensors are worn on the body, communicating wirelessly to a local coordinator station (and possibly remotely to a central server)
- Applications:
 - health-care,
 - fitness and wellness,
 - emotion and stress recognition,
 - interactive gaming.
 - social interaction.

WBSNs: research motivation

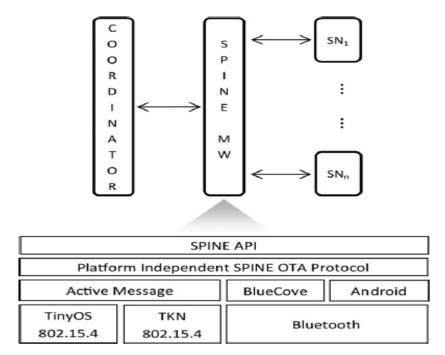
- Programming BSN systems is a complex task
 - Constrained hardware resources;
 - (quasi) real time requirements;
 - Low-level software abstractions (languages, native libraries, OSs);
 - Signal-processing and decision support;
 - Security and privacy.

WBSN Programming: Related Work

- Three main approaches:
 - Application-specific development
 - Greatest majority of the WBSN research prototypes so far
 - General-purpose middlewares for WSNs
 - Titan (customized for WBSNs), MAPS (exploited for BSN applications, <u>http://maps.deis.unical.it</u>)
 - Domain-specific frameworks
 - **CodeBlue** (very limited signal processing integrated support)
 - RehabSPOT (limited customization, only works on SunSPOT)

Objective

- Application-specific development is time consuming, errorprone, and produces code scarcely reusable
- General purpose middlewares for WSNs do not address specific BSN system needs


To fully address such limitations, our research focused on defining effective **domain-specific** design methodologies and embedded frameworks for programming signal-processing intensive WBSN applications.

WBSN Programming: Requirements

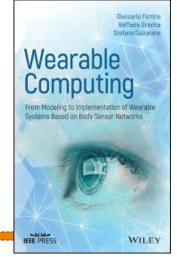
TASK	DESCRIPTION
SENSOR SAMPLING	The sensor sampling process represents the first step for developing a BSN application. Selecting the appropriate sampling time to satisfy the application requirements is important, as it determines the amount of raw data generated and processed (and to a certain degree, energy consumed). The proper execution of the application may depend on this parameter; often, a minimum sampling time is required to allow a sensor to accurately capture a particular phenomena.
IN-NODE DATA PROCESSING	Classifier algorithms very rarely use raw data. Instead, attributes (or features) are extracted on sample data windows and used to detect events and classify activities. Extracting features directly on the wireless nodes allows for reduction of radio usage, as resulting summary data are sent instead of raw data values.
SENSOR CONFIGURATION AT RUN-TIME	Support for runtime configuration (enabling, disabling, setting the sampling rate) on the available sensors of a node is often very useful. Application requirements can change over time; for instance, under certain circum- stances, a sensor may be sampled at a lower rate, or its data not needed at all. Therefore, supporting runtime sensor configuration allows dynamic application behavior.
NODE SYNCHRO- NIZATION	Many BSN-oriented signal-processing algorithms require sensors on mul- tiple nodes to be sampled in unified time intervals, to ensure consensus of time in observing underlying events. Nodes are often kept synchronized to in turn allow synchronized sampling of sensors and joint processing data at the coordinator.
DUTY-CYCLING	Duty cycling is a mechanism for controlling radio power, to reduce power consumption of a sensor node, thus increasing its battery lifetime. Radio duty cycling must be tuned very carefully in order to minimize energy use, but allow sufficient transmission of data.
APPLICATION LEVEL COMMUNICATION PROTOCOL	A specific application level communication protocol is needed to support the interaction among sensor nodes (if needed) and between sensor nodes and the coordinator. The communication involves sensor node discovery and service advertisement, requests for sensing and signal processing, raw and preprocessed sensor data transmission, and event delivery.
HIGH-LEVEL PROCESSING	Often, the end-user BSN applications do much more than plotting sensor data into graphs. They require the interpretation of asynchronous events and periodic data coming from sensors in high-level knowledge. This implies decision support (classification) algorithms that extract meaningful information from such events and data.

REQUIREMENT		HIGH-LEVEL TECHNIQUES						
Programming	ogramming Abstractions, Software Engineering							
Effectiveness Meth		Methods, Debugging and Testing Tools						
System Efficiency	Res	ource Man	agement Optin	mization				
System	App	Application-Level Communication Protocol and						
Interoperability	Ada	pter for He	eterogeneous S	Sensor In	clusion			
System Usability	GU	- I-based fley	kible managen	nent of th	ne BSN s	ystem,		
			hone-based C					
Privacy Support	Dat	a encryptio	on and authent	ication				
		CodeBlue	RehabSPOT	MAPS	TITAN	SPINE		
Programming Effectiven	ess							
Programming Abstractions	;	partial support	partial support	~	~	~		
Software Engineering Methods			partial support	partial support	partial support	~		
Debugging and Testing Tools			~	~		~		
System Efficiency								
Resource Management Optimization		\checkmark			~	~		
System Interoperability								
Application-Level Communication Protocol		~	~	~	partial support	~		
Adapter for Heterogeneous Sensor Inclusion						~		
System Usability								
GUI-based flexible management of the BSN system		partial support	partial support			~		
PC and smartphone-based Coordinator		partial support	~	partial support	~	~		
Privacy Support	Privacy Support							
Data encryption and authentication			~		~	~		

The SPINE (Signal Processing In-Node Environment) Project

http://spine.deis.unical.it

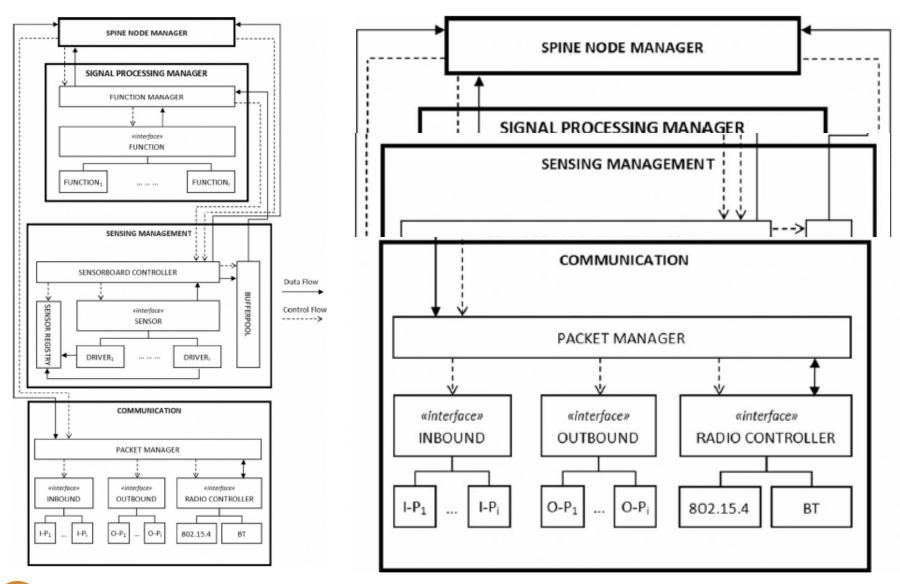
Project Contributors:


•...

Telecom Italia (F. Bellifemine)
UT Dallas (R. Jafari)
UC Berkeley (A. Sangiovanni-Vincentelli)

- G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, R. Jafari, "Enabling Effective Programming and Flexible Management of Efficient Body Sensor Network Applications", IEEE Transactions on Human-Machine Systems, vol. 43, no. 1, pp. 115-133, Jan. 2013.

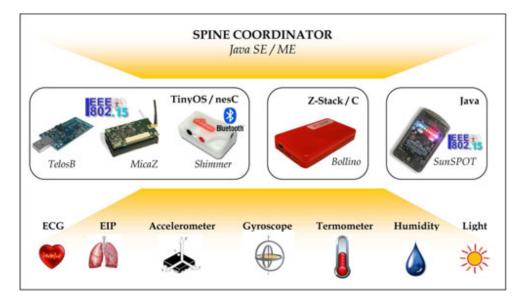
Award: 2014 Andrew P. Sage Best IEEE SMC Transactions (from Web of Science Core Collection) Highly Cited Paper


-G. Fortino, S. Galzarano, R. Gravina, *Wearable Systems and Body Sensor Networks: from modeling to implementation*, Wiley, USA, 2018.

The SPINE (Signal Processing In-Node Environment) Framework

-	FUNCTI	ONALITY	DESCRIPTION	_		
SERVIC	FEATURE		DESCRIPTION	-d their		
	Raw data	Sensed data coming from sense	sing processes			
	Max	Maximum value computed on				
	Min	Minimum value computed on	Minimum value computed on a sample window			
	Range	Maximum displacement (max	-min) value computed on a sample window			
FLEXIB	Mean	Average value computed on a	sample window	sensor		
	Amplitude	(Maximum-mean) value comp		Jenson		
	RMS	RMS value computed on a sa	mple window			
	St dev	Standard deviation value comp	puted on a sample window			
RAW S	Total energy	Cross-axial magnitude comput sensor channels, if any.	ted on a sample window. It takes into account multiple	^e nissior		
	Variance	Variance value computed on a				
	Mode	Most frequent value computed	d on a sample window			
ON-NC	Median	Median value computed on a buffer)	sample window (central value of the ordered window	[•] iodic		
	Vector magnitude	Magnitude of a sample windo	w (sum of the squares of the window elements)			
	Entropy	Entropy computed on a sample	le window			
	Pitch & roll	Pitch and roll estimation com	puted on a sample window. It is useful only if applied	d		
HIGH-I		to accelerometer data.		and		
	ALARM			and		
	ABOVE	An alarm is triggered when a	given sensor data or a computed feature exceeds the	: data		
	ADOVE	specified threshold	given sensor data or a computed reature exceeds the			
	BELOW	1	given sensor data or a computed feature goes below	ita.		
	DELOT	the specified threshold	given sensor data of a computed reature goes below			
TAILOF	WITHIN	1	given sensor data or a computed feature are within the	and		
(Exter		range of the specified threshol				
(=////	OUTSIDE		en sensor data or a computed feature exceeds the range	e		
SECUR		specified by the thresholds (m				
				-		

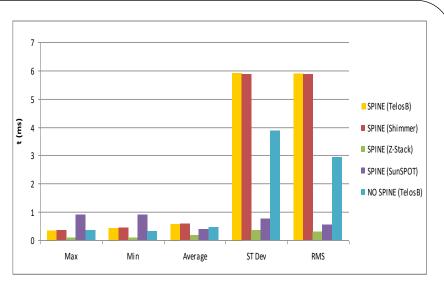
The **SPINE** Node architecture


11

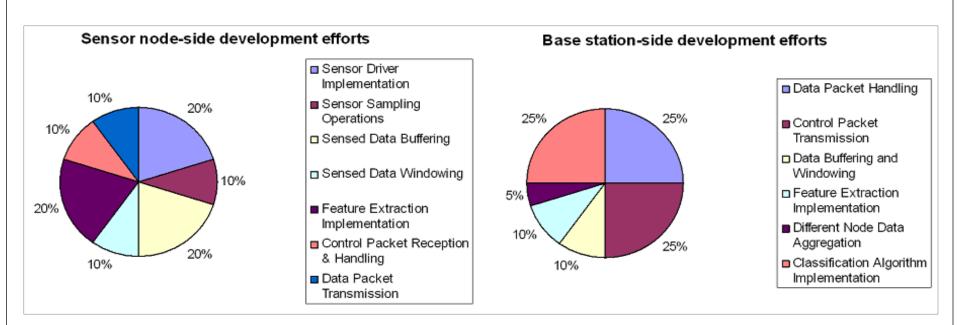
The **SPINE** Coordinator architecture

	Rhysical Activi	ty Monitorin	g vli2		(
	Application Tools Gadgets	18:50		* # 41 6	18:51
	Sta 🔊 🐨 🔀	7 4	₽ ¢	· 💿 💥	V 4
	Node 1, Active WSN setup sen setup fun activate fi	Log	WSN setup	sen setup fun activate fi	Log
EVENT DIS	Onboard Sensors Description Node number: 1		Node	1	
Nessages d	cputemperature ch1 gyroscope ch1,		number:		
	voltage ch1 Sensor acceleromete	-	Function	BufferedRawD	-
	Available Functions	_			
	Function Nat Feature: Vector Magnitude Feature: Pitch & Roll Feature: Raw Data	nin	Sensor	accelerometer	-
РІ	Feature: Median		Window	4	
<u> </u>	Active Functions Set				
	Function Sensor		Overlap	4	le
	Mean accelerom Min accelerom Max accelerom			Set	
MSG CO	•(
BT ADAPTE	R EMU ADAPTER TINYOS ACTIV System notific:		cence message	ушень місн тезресс	LO LIIE

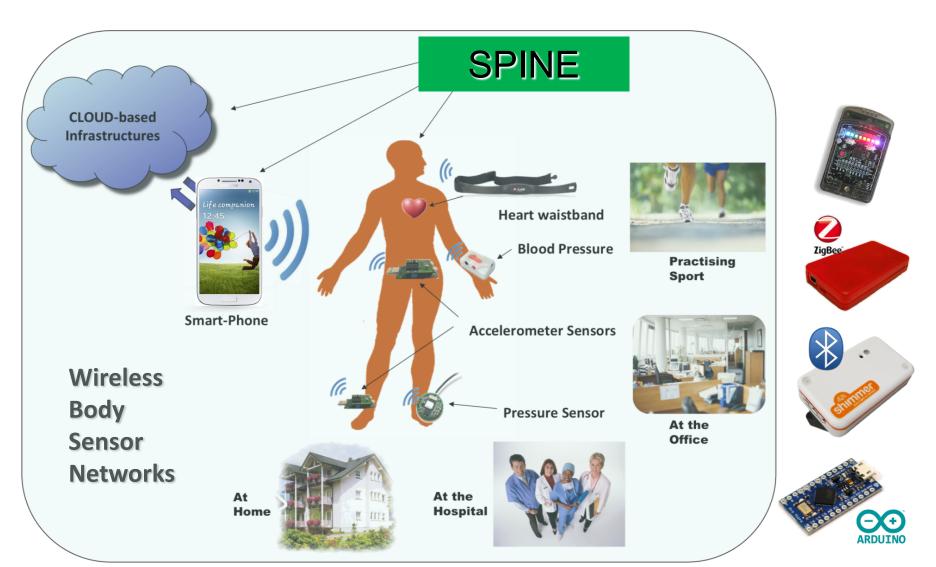
12


SPINE: Sensor and Coordinator Heterogeneity

SPINE-TESTED MOBILE PERSONAL DEVICES


Device	CPU	RAM	Misc.
HTC	1GHz, Qualcomm Snapdra-	512 MB	Android 2.x. MicroSD, up
NexusOne	gon QSD 8250		to 32 GB.
Samsung	1GHz, ARM Cortex-A8	512 MB	Android 2.x. MicroSD, up
Galaxy S			to 32 GB.
Nokia	332 MHz, TI OMAP 2420	128 MB	Symbian OS v9.2, S60 rel.
N95	(ARM11-based)		3. MicroSD, up to 32GB
Nokia	369, MHz ARM11	64 MB	Symbian OS v9.2, S60 rel.
6120			3.1. MicroSD, up to 8GB.

SPINE: Performance Evaluation



	Memory Requirements		Energy Consumption			Bandwidth Transmission		ssion Delay
Application Profile	RAM (Kb used/av.)	ROM (Kb used/av.)	Average Power Consumption	Battery	Lifetime	Bitrate	802.15.4	Bluetooth
SPINE on TelosB	3.7 / 10	33.5 / 48	6.6 mW/s	650mAh	101 h	178 byte/s	10,07	N/A
SPINE on Shimmer	4.4 / 10	40.0 / 48	13.9 mW/s	280mAh	21 h	178 byte/s	10,04	N/A
SPINE on Shimmer Bluetooth	4.3 / 10	34.4 / 48	87.8 mW/s	280mAh	3 h	150 byte/s	N/A	3,05
SPINE on Z-Stack	3.9/8	95.9 / 128	11.2 mW/s	650mAh	60 h	160 byte/s	0,61	N/A
SPINE on SunSPOT	79.0 / 512	75.0 / 4096	84.2 mW/s	720mAh	9 h	168 byte/s	67,20	N/A
A-hoc application on <i>TelosB</i>	1.3 / 10	16.1/48	73.7 mW/s	650mAh	9 h	152 byte/s	9,98	N/A
CodeBlue on TelosB	3.4 / 10	36.6/48	74.2 mW/s	650mAh	9 h	186 byte/s	10,25	N/A
TITAN on <i>TelosB</i>	9.0 / 10	38.7 / 48	18.7 mW/s	650mAh	36 h	158 byte/s	10,43	N/A

SPINE: Evaluation of Development Efforts

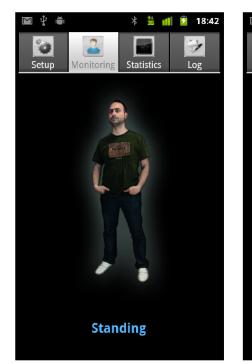
Application Domains

16

SPINE-based Research BSN Prototypes

- Human Activity Recognition
 - higher accuracy using less wearable nodes compared to related work
- Step-counter
 - Works for elderly using walkers, and for disabled people
- Emotional Stress indicator
 - Real-time, evaluation based on time-domain analysis
- Physical Energy Expenditure
 - Auto-orientation for gravity-compensation

Research BSN Prototypes

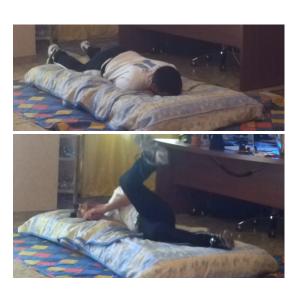

Application	SPINE Node-side	SPINE Coordinator-side
Activity	None	Off-line feature selection algorithm.
Recognition		Real-time K-Nearest Neighbor classifier.
Physical Rehab	None	Trigonometric function for upper and lower body joint angles estima- tion.
Gait Analysis	HMM on-line classifier (trained off-line using Matlab).	Custom-defined gait data message decoder.
	Custom-defined gait data message encoder.	
Kcal Expenditure	Activity counts feature ex- traction.	Kcal estimation algorithm, based on activity counts values from wear- able node.
Stress	Driver adapter for Cardio- Shield sensor-board.	Time-domain HRV analysis.
Detector	RRi feature extraction.	Stress detector classifier.
Handshake	Zero-crossing and Near- zero feature extraction.	Extension for Collaborative-BSN interaction model.
Detection	On-line local decision tree classifier for potential handshake detection.	Distributed decision tree classifier based on joint data from potential meeting people.

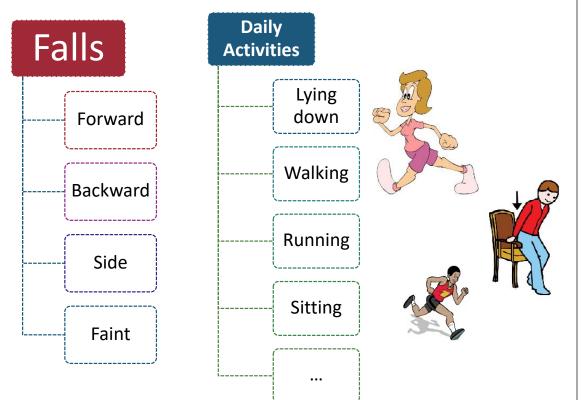
Human Activity Recognition

- System configuration: 2 wireless motion sensors (waist and thigh) + 1 coordinator device
- Recognized Activities and posture: walking, standing, sitting, lying
- Built-in Fall Detection
- Step-counter
- Energy Expenditure (Kcal)
- Very Accurate (>98%)
- Connection to the Cloud

Human Activity Recognition

Play VIDEO


Smart Fall Detection


- System configuration: 1 wireless motion sensor + 1 coordinator device
- Better precision, specificity, and sensitivity than other commercial systems
- Alarm notification on Social Networks and via automated SMS/voice calls

Smart Fall Detection

 Wide training set including falls and daily activities

Cardiac Monitoring, Mental Stress Detection and Fear Recognition

- Real-time, evaluation based on time-domain analysis
- Low power
- Completely wireless and non-invasive
- Wearable
- Robust to motion artifacts
- Connection to the Cloud

Cardiac Monitoring, Mental Stress Detection and Fear Recognition

SPINE Enhancements and Variants

- C-SPINE
- Virtual Sensors and SPINE
- A-SPINE
- SPINE2
- SPINE-*

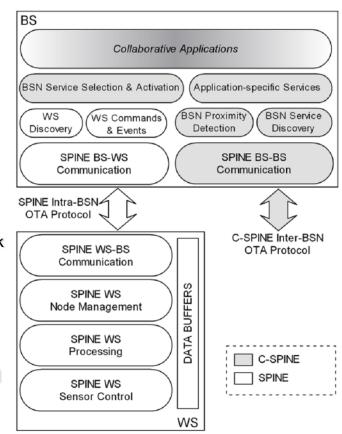
SPINE Enhancements

• C-SPINE

• Support for **Collaborative BSNs**

*Giancarlo Fortino, Stefano Galzarano, Raffaele Gravina, Wenfeng Li: A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Information Fusion 22: 50-70 (2015)

- Virtual Sensors and SPINE
 - Multi-layer task model based on


the concept of VS

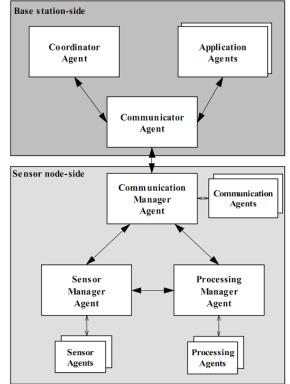
• <u>Definition</u>:

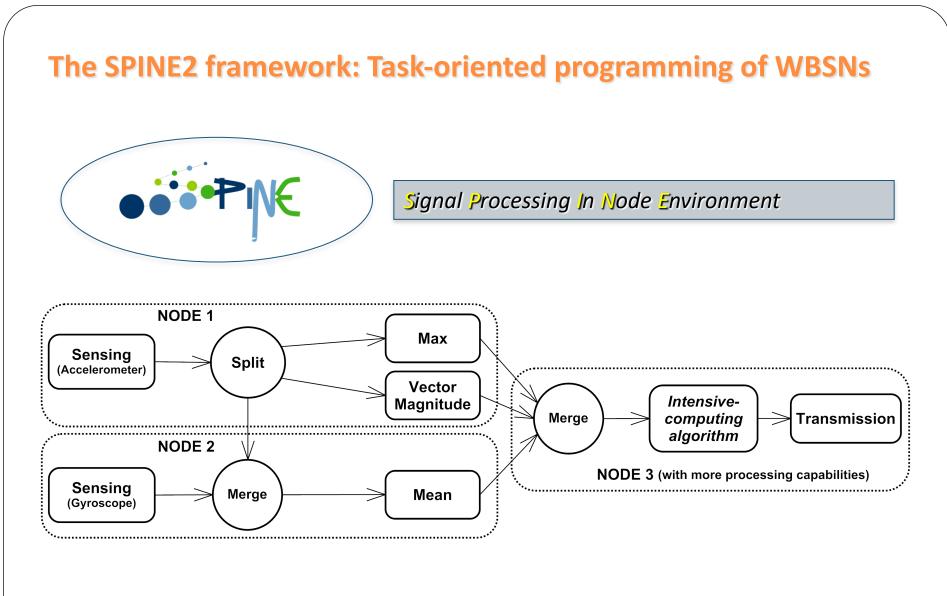
$$VS_i = \{I_i, O_i, C_i\}$$
, where $C_i = \{\vec{t}_{in}, \vec{t}_{out}, d, p\}$

• VSs are composable to form more complex VSs

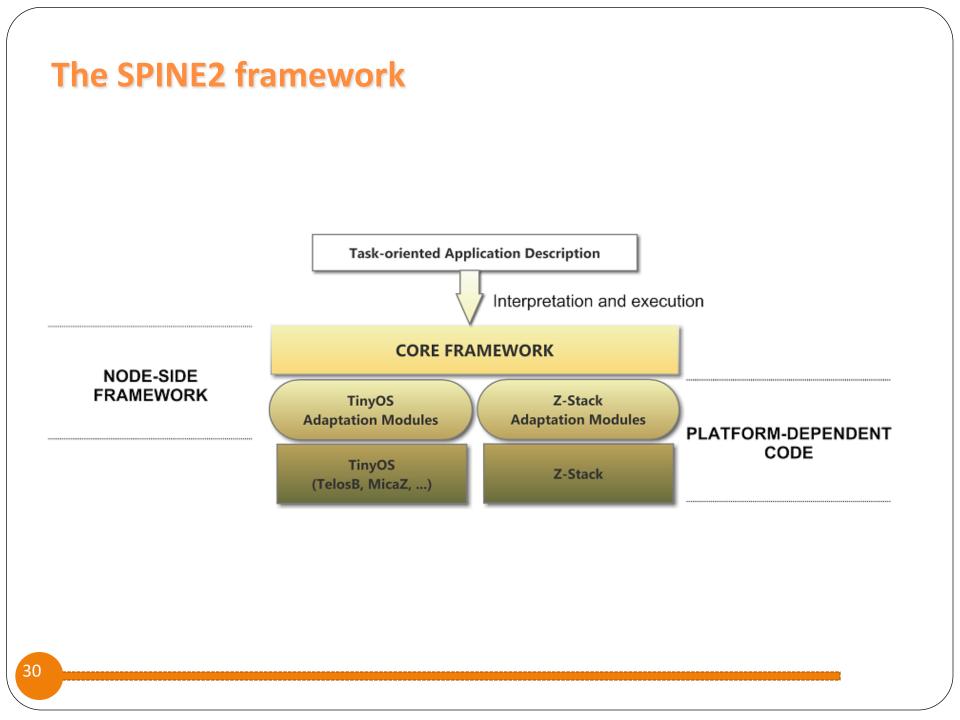
*N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannantonio, M. Sgroi, R. Jafari, G. Fortino, "From Modeling to Implementation of Virtual Sensors in Body Sensor Networks", IEEE Sensors Journal, 12(3), 583-593, 2012.

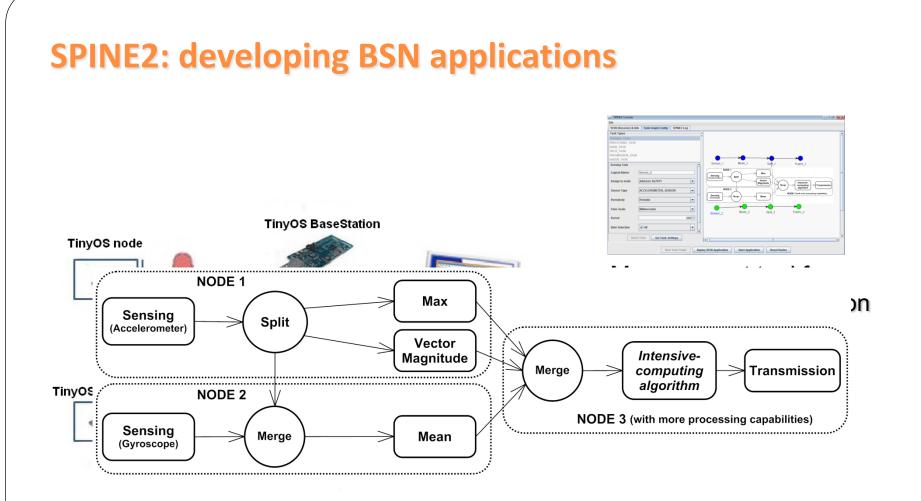
A-SPINE: Agent-based programming for BSNs


- Among the programming paradigms proposed for the development of WSN applications, the (mobile) agent-based paradigm can effectively deal with the programming issues that WSNs have posed.
- MAPS Case study:

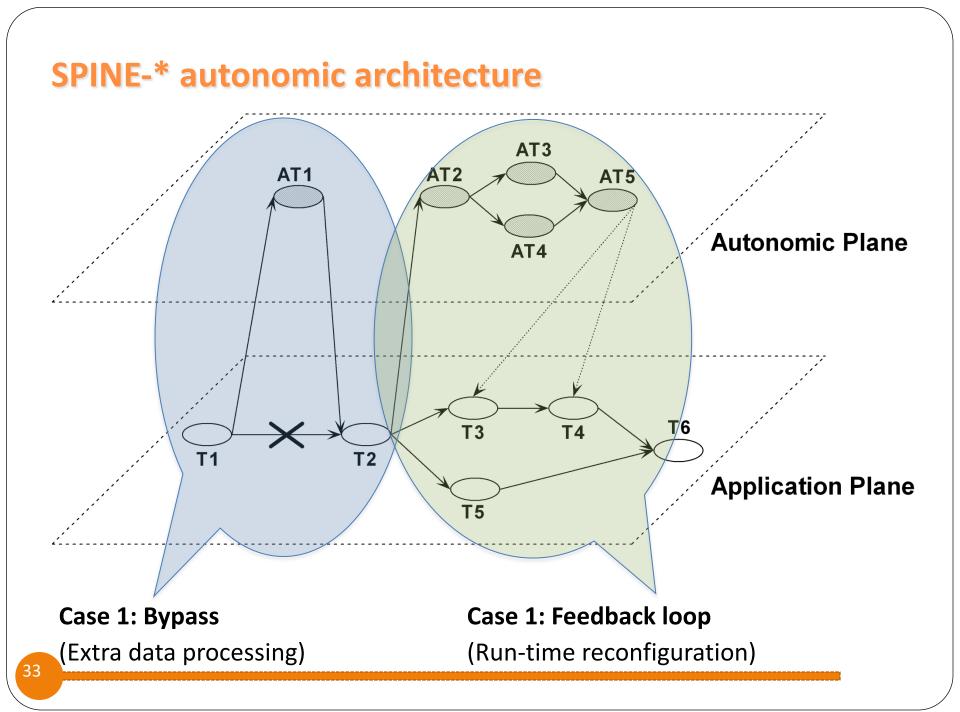

Physical activity monitoring application

based on SunSPOT sensor nodes.


- F. Aiello, G. Fortino, R. Gravina, A. Guerrieri, "A Java-based Agent Platform for Programming Wireless Sensor Networks" *The Computer Journal*, 54(3), pp.439-454, 2011.


- F. Aiello, F. Bellifemine, S. Galzarano, R. Gravina, and G. Fortino "An agentbased signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks", *Journal of Engineering Applications of Artificial Intelligence*. Vol. 24, n. 7, pp. 1147-1161. 2011.

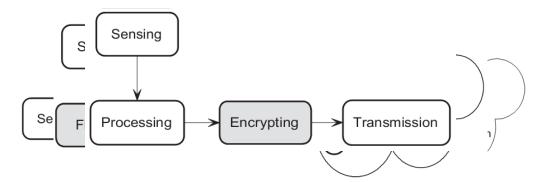
S. Galzarano, R. Giannantonio, A. Liotta, G. Fortino, "A task-oriented framework for networked wearable computing", in *IEEE Transactions on Automation Science and Engineering*, 13(2): 621-638 (2016).



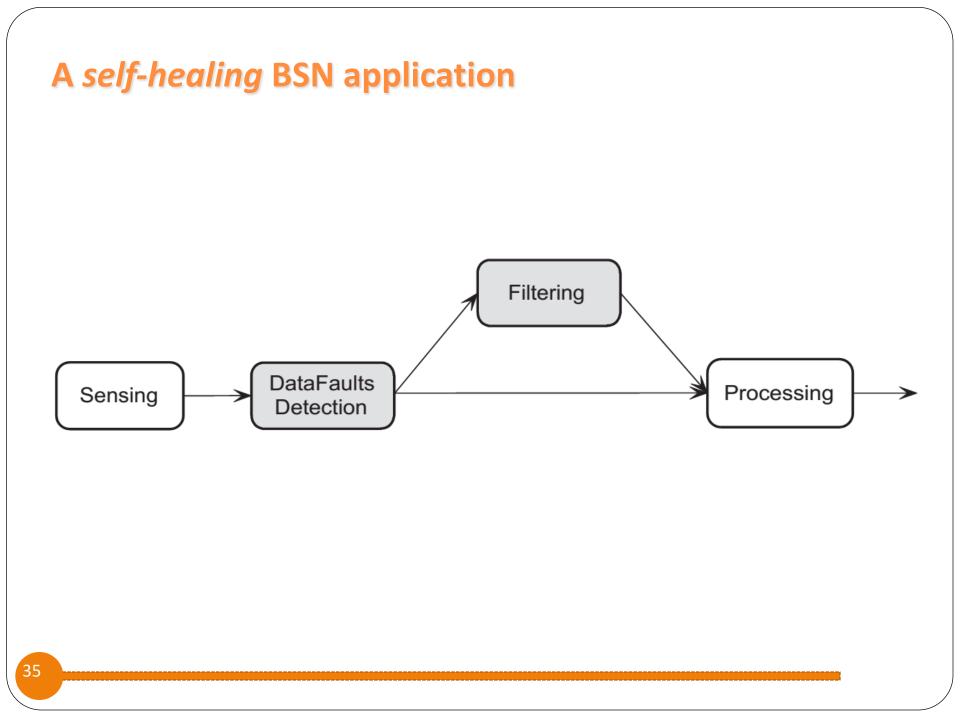
SPINE-* autonomic architecture

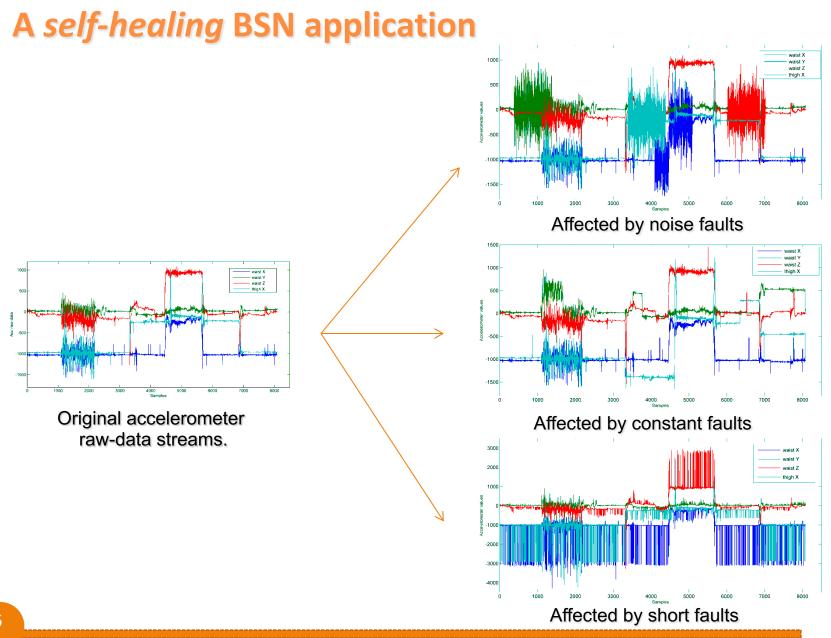
32

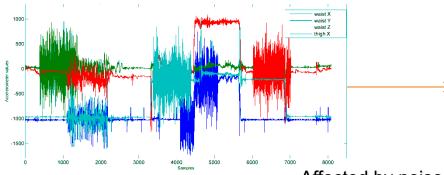
- *Autonomic* characteristics may be incorporated into the system, so to better ensure the reliability and maintainability properties.
- The architecture is composed of two distinct planes



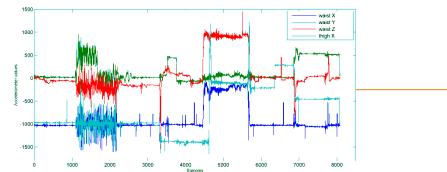
Self-* properties


Self- configuration


• Self- healing


Self-optimization

• Self-protection

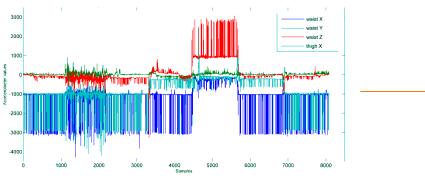


A self-healing BSN application

Channel	σ	Accuracy
All	100	98.64%
All	300	91.77%
All	500	89.54%
All	1000	88.29%
All	1500	84.85%

Affected by noise faults

Channel	K	Accuracy
All	100	98.51%
All	200	95.24%
All	500	91.06%
All	1000	82.08%
All	2000	56.65%


Affected by constant faults

3000 2000		* I				i waist waist waist waist waist waist waist	Y Z	
1000 ‴	- 		<u>⊢</u> µµ		L		-	-
Vccelerometer values								
-2000								
-4000			4000 Samples	1 5000	6000	7000	8000	

Channel	Р	Accuracy
All	1%	79.90%
All	5%	55.09%
All	10%	51.86%
All	25%	48.14%
All	50%	46.65%

Affected by short faults

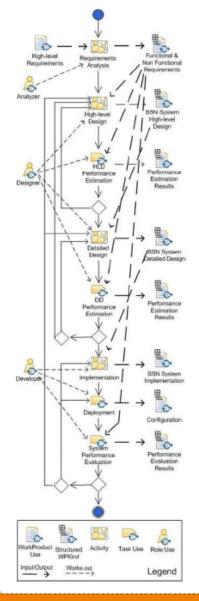
A self-healing BSN application

Channel	Р	Accuracy
All	1%	79.90%
All	5%	55.09%
All	10%	51.86%
All	25%	48.14%
All	50%	46.65%

Affected by short faults

ACCURACY IMPROVEMENTS WITH SHORT-FAULTS OVER ALL CHANNELS AND WITH C=3

Р	Accuracy (affected data)	Accuracy (recovered data)
1%	79.90%	99.75%
5%	55.09%	99.75%
10%	51.86%	98.51%
25%	48.14%	59.55%
50%	46.65%	47.64%


Platform-Based Design methodology for BSN

- PBD is a methodology for system-level design for embedded systems.
- It is based on stacks of *Platforms* representing the system at different level of abstractions.
- Iterative refinements map components of a platform to components of the lower platform, providing an *implementation* of the higher platform.
- Each *mapping* step is obtained as the resolution on an optimization problem.
- At the end, the system is fully specified and a final, optimized and correct-by-construction implementation is available.

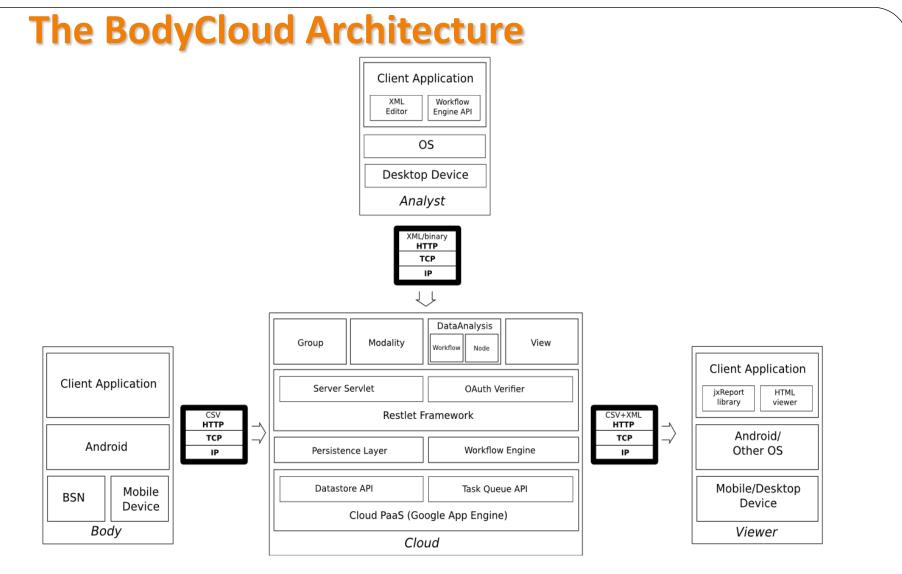
Platform-Based Design methodology for BSN

- The first layer is an application interface called Sensor Network Service Platform. The SNSP defines a set of services available to the end user to specify the target application formally without dealing with the details of a particular network implementation.
- The abstraction layer in the middle is the Sensor Network Ad-hoc Protocol
 Platform and it is a library of communication protocols that can be optimized to be deployed on the given topology to satisfy end to end communication constraints.
- The lowest abstraction layer is the Sensor Network Implementation Platform, which is a library of different hardware platforms that can be used to create the topology that supports the application.
- The approach has been experimented on a case study for complex human activity recognition based on Template Matching techniques

Platform-Based Design Methodology for BSN

41

SPEM 2.0 Process Schema:


- •Requirements Analysis
- •High-level Design (HLD)
- •Performance Estimation of HLD
- •Detailed Design (DD)
- •Performance Estimation of DD
- Implementation
- Deployment
- •System Performance Evaluation

Conclusions

- SPINE (and its enhancements and variants) is a significant step forward to the state-of-the-art:
 - Support for heterogeneous sensor platforms;
 - High-level abstractions (Virtual Sensors);
 - High-level Data Processing (support for signal processing and classification);
 - Platform-independence;
 - Novel Interaction models (support for Collaborative BSNs).
- Each proposed BSN prototype improved the state-of-the-art.
- **PBD** methodology has never been applied to the BSN domain before.

Research Challenges: Towards BSN communities

- BSNs can be adopted to monitor a large pool of people, thus generating large amounts of contextual data. Such a Big Data scenario requires a scalable approach for data collection, storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated by BSNs.
- We have proposed **BodyCloud (bodycloud.dimes.unical.it)**, a Cloud-enabled SaaS architecture for the management of body sensor data streams and the complete life cycle of data analysis workflows (data collection, storing, analysis, and presentation).
- BodyCloud approach offers a very flexible and intuitive programming model centered on a few web-based programming abstractions (group, modality, workflow/node, view) that allow to define and deploy community BSN applications.

G. Fortino, D. Parisi, V. Pirrone, G. Di Fatta, BodyCloud: A SaaS Approach for Community Body Sensor Networks, *Future Generation Computer Systems*, vol. 35, n. 6, pp. 62-79, 2014.

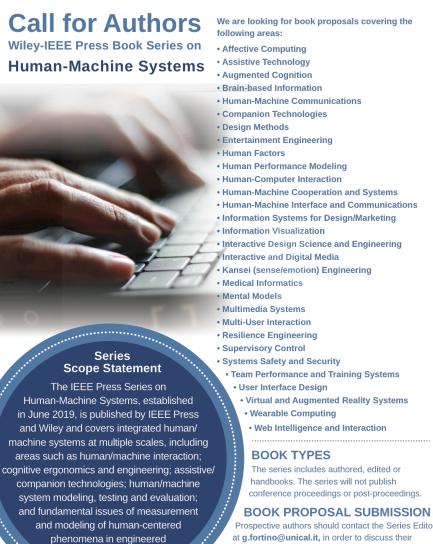
Among the Most Cited Future Generation Computer Systems Articles - The most cited articles published since 2012, extracted from Scopus: https://www.journals.elsevier.com/future-generation-computer-systems/most-cited-articles

Future Work (about WBSN/SPINE)

- Enhancing and Applying the SPINE* approach to make BSN applications *Cognitive*
- Software-defined BANs
- Integration of BSNs and Environmental WSNs (e.g. building networks): gateway-based approach integrating SPINE and BMF (<u>http://bmf.deis.unical.it</u>)
- Integration of BSNs in IoT Smart Environments (e.g. smart building, smart office, etc.): ACOSO (<u>http://acoso.dimes.unical.it</u>)

Highlights on SPINE works

SPINE Open Source Project http://spine.deis.unical.it


BODYCLOUD Open Source Project http://bodycloud.dimes.unical.it

-G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, R. Jafari, "Enabling Effective Programming and Flexible Management of Efficient Body Sensor Network Applications", IEEE Transactions on Human-Machine Systems, vol. 43, no. 1, pp. 115-133, Jan. 2013.

Awarded with Andrew P. Sage Best SMC Transactions Paper 2014

N. Citations to SPINE-enabled research (overall) ≈ 4000

BOOK: G. Fortino, S. Galzarano, R. Gravina, *Wearable Systems and Body Sensor Networks: from modeling to implementation*, IEEE Press - Wiley, USA, 2018.

Prospective authors should contact the Series Editor at g.fortino@unical.it, in order to discuss their project. Authors will then be invited to submit a book proposal to be reviewed by a panel of experts.

systems.

·····

WILEY

Description Springer

springer.com

🖉 Springer

Springer books available as

Printed book
Available from springer.com/shop

🥑 eBook

Available from your library or <u>springer.com/shop</u>

🦉 МуСору

Printed eBook for just ► €|\$ 24.99

springer.com/mycopy

Internet of Things

Technology, Communications and Computing

Series Editors: G. Fortino, A. Liotta

The series Internet of Things - Technologies, Communications and Computing publishes new developments and advances in the various areas of the different facets of the Internet of Things.

The intent is to cover technology (smart devices, wireless sensors, systems), communications (networks and protocols) and computing (theory, middleware and applications) of the Internet of Things, as embedded in the fields of engineering, computer science, life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in the Internet of Things research and development area, spanning the areas of wireless sensor networks, autonomic networking, network protocol, agent-based computing, artificial intelligence, self organizing systems, multi-sensor data fusion, smart objects, and hybrid intelligent systems.

Internet of Things is covered by Scopus.

Recently published:

M. Farsi, A. Daneshkhah, A. Hosseinian-Far, H. Jahankhani (Eds.) Digital Twin Technologies and Smart Cities

S. Ziegler (Ed.) Internet of Things Security and Data Protection

R.S. Chakraborty, J. Mathew, A.V. Vasilakos (Eds.) Security and Fault Tolerance in Internet of Things

Upcoming Volumes:

A. Salam

Internet of Things for Sustainable Community Development Wireless Communications, Sensing, and Systems

Submission information at the series homepage and springer.com/authors

Order online at springer.com ► or for the Americas call (toll free) 1-800-SPRINGER ► or email us at: customerservice@springer.com. ► For outside the Americas call +49 (0) 6221-345-4301 ► or email us at: customerservice@springer.com.

THANKS FOR YOUR ATTENTION

Questions?